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Abstract—General purpose compilers aim to extract the best
average performance for all possible user applications. Due to
the lack of specializations for different types of computations,
compiler attained performance often lags behind those of the
manually optimized libraries. In this paper, we demonstrate
a new approach, programmable composition, to enable the
specialization of compiler optimizations without compromising
their generality. Our approach uses a single pass of source-
level analysis to recognize a common pattern among dense
matrix computations. It then tags the recognized patterns to
trigger a sequence of general-purpose compiler optimizations
specially composed for them. We show that by allowing
different optimizations to adequately communicate with each
other through a set of coordination handles and dynamic
tags inserted inside the optimized code, we can specialize
the composition of general-purpose compiler optimizations to
attain a level of performance comparable to those of manually
written assembly code by experts, thereby allowing selected
computations in applications to benefit from similar levels of
optimizations as those manually applied by experts.

Keywords-Computers and information processing; Computer
science; Programming; Automatic programming

I. INTRODUCTION

Dense matrix computations, represented by the Basic
Linear Algebra Subprograms (BLAS) library, are widely con-
sidered a fundamental component of numerical applications.
Many compiler optimizations, e.g., those in Fig 2, have
been shown to be highly effective for computations similar
to the gemm kernel in Fig 1. However, the performance
of the compiler-optimized code is often suboptimal when
compared to those attained by manually optimized libraries,
e.g., MKL [17], ACML [4], and ATLAS [29], which have
been supplied by CPU vendors or HPC researchers, often
with selected kernels directly implemented in assembly [8].
Developing highly optimized libraries manually, however, is
excessively labor intensive and error prone. As the result,
not all kernels receive the same level of optimization,
and general-purpose applications cannot benefit from the
optimizations unless rewritten to invoke the libraries.

A key dilemma faced by general-purpose compilers is that
they must use a common set of strategies to attain the best

void gemm(int M,int N,int K,double alpha,double *A,int lda,
double *B, int ldb,double beta,double *C, int ldc)

{ int i, j, k;
loop1: for (j = 0; j < N; j += 1)
loop2: for (i = 0; i < M; i += 1) {

C[j * ldc + i] = (beta * C[(j * ldc) + i]);
loop3: for (k = 0; k < K; k += 1)

C[j*ldc+i]+=alpha*A[k*lda+i]*B[j*ldb+k];}}
}

Figure 1. Example: the matrix-matrix multiplication kernel
(1) Loop parallelization: outermost loop (loop1)
(2) Loop blocking: the entire loop nest (loop1 - loop3)
(3) Loop unroll&Jam: unroll outer loops(loop1/loop2), then

jam unrolled iterations inside the innermost loop3
(4) Array copy: arrays non-contiguously accessed:

alpha*A[i*lda+k] using blocked layout for loops i,k
B[j*ldb+k] using blocked layout for loops j,k

(5) Scalar replacement: array references inside loops:
A[k*lda+i] and B[j*ldb+k] inside loop3;
C[j*ldc+i] inside loop2

(6) Loop unrolling: innermost loop (loop3)
(7) Strength reduction: array address calculations:

A[k*lda+i], B[j*ldb+k], and C[j*ldc+i]
(8) SIMD vectorization: innermost loop (loop3)
(9) Loop splitting: remove conditionals inside loops
(10) Peephole opt.: pattern-based assembly-level opt.

Figure 2. Example: optimizating the gemm kernel in Fig 1

average performance for all possible user applications. Their
optimizations are generally organized as a sequence of in-
dependent passes, e.g. polyhedral loop optimization pass [9]
vs. register allocation and SIMD vectorization passes [15],
[26], [23]. To ensure correctness and profitability, each pass
needs to re-analyze the output of previous passes to deter-
mine the feasibility of additional optimizations, so that they
could refrain from optimizations that are potentially unsafe
or non-profitable for some unexpected cases. Since each pass
can generate hard-to-analyze code, with redundancies to be
removed via later passes [13], much information can be lost
from one pass to another, resulting in poor coordination
among the optimizations and missed opportunities.

To elaborate, consider the gemm kernel in Fig 1, with a
list of optimizations customized for this code shown in Fig 2.
Rather than analyzing the source-level representation of the
input code to collectively determine the entire collection of
applicable optimizations, most existing compilers would use
the input code in Fig 1 to directly trigger only the first
three loop optimizations in Fig 2, as they all rely on loop



dependence analysis [2] and can be applied together in a
single pass, e.g., via the polyhedral framework [9]. Since
array copy must be applied in sync with loop blocking,
it is commonly omitted by compilers. The rest of opti-
mizations ((5)-(10)) are typically applied one after another,
each as an independent pass, based on analyzing the output
of earlier optimizations. The optimization passes may be
ordered differently in different compilers, but each compiler
typically uses the same ordering for all applications. Since
different optimizations often have conflicting objectives, e.g.,
maximizing cache locality vs. instruction-level parallelism,
the lack of coordination among optimizations make their
overall impact unpredictable.

Due to the unpredictable interferences among differ-
ent compiler optimizations, the ordering of optimization
phases [19] is a well-known NP-complete problem within
compilers, and no single phase ordering is expected to work
well for all applications. Instead of attempting to solve
this problem in general, we demonstrate a new approach,
programmable composition, which overcomes this issue
through two key technologies: (1) enabling fine-grained
coordination among compiler optimizations to minimize
their interferences, and (2) specializing the composition of
compiler optimizations for known computational patterns
so that the highest performance can be attained for these
patterns without compromising the average performance
attainable for other computations.

As illustrated in Fig 3, we use a single pattern-based anal-
ysis phase to recognize a class of dense matrix kernels that
benefit from a common set of optimization configurations.
The input source code is then annotated with the recognized
pattern, shown above loop1 in Fig 4(a), and used to trigger
a collective customization of all the relevant optimizations.
The optimizations are then applied in a specialized order
customized for the pattern, with each optimization carefully
coordinating with others through a set of pre-designated co-
ordination handles and dynamically inserted symbolic tags.
This new optimization approach addresses phase-ordering
sensitivity within conventional compilers by enabling all
optimizations to be collectively customized based on the
source level representation (e.g., AST) of the original input
code. No information is lost from re-analyzing optimized
code, so no resulting missed opportunities. All optimizations
are well coordinated in the process and thus are insensitive
to minor variations induced by other optimizations or from
the original input code. e.g, slightly different nesting order
of the loops or indexing expressions of the arrays in Fig 1.
By recognizing the fundamental properties of computations
early, our approach is able to address potential safety con-
cerns, e.g., whether the values of lda/ldb/ldc are greater
than those of N/M/K in Fig 1, by inserting runtime checks
surrounding the entire optimized code without compromis-
ing the effectiveness of optimization.

Our contributions include the following.
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Figure 3. Optimization workflow

• We present a novel approach, programmable compo-
sition, to support specialized customization and fine-
grained coordination of complex compiler optimiza-
tions for an important class of dense matrix kernels.

• We applied our prototype compiler to optimize 15
kernels from the BLAS library and 9 application bench-
marks from SPLASH-2 [30]. Our optimizer is able to
attain a level of performance similar to that attained
via manual assembly programming for the kernels and
allows such level of optimizations to be attained for
selected loops in large applications by automatically
recognizing the relevant computation patterns.

We chose dense matrix computations because the opti-
mizations required for these kernels are well known and
already integrated as part of most general-purpose compilers,
including the POET optimization library [32] which we used
to implement our compiler. The same approach, however,
can be used to specialize compilers for other important
kernels, e.g., stencils and digital signal processing, by simi-
larly recognizing the computation patterns of these kernels,
integrating additional required optimizations, and then co-
ordinating the optimizations to maximize their collective
effectiveness. Since the conventional optimization passes are
used for computations that are not tagged with a recognized
pattern, the generality of the compiler is not compromised.

II. COORDINATING COMPILER OPTIMIZATIONS

A key focus of this paper is to enable fine-grained coordi-
nation among independent compiler optimizations to reduce
their unexpected interferences. The following introduces two
mechanisms, coordination handles and symbolic tagging, to
accomplish this purpose.

A. Coordination Handles

The purpose of each coordination handle is to serve as
a pre-configured communication channel among different
optimizations. Each channel is associated with a single des-
ignated piece of code in the original input and is mapped to a
permanent name, e.g., the names 1,..., 12 in Fig 4(a). When
each designated code piece is modified by some compiler
optimization, the modification needs to be coordinated with
other optimizations, and the coordination is realized by
modifying the corresponding communication channel (i.e.,
the coordination handle) with an equivalent implementation
of the original code fragment. Through a set of coordination



handles, each compiler optimization can keep track of mod-
ifications to the input code by other optimizations, thereby
better accommodating their interferences.

To support effective communication, all the coordination
handles must be set up before applying any optimization.
First, our framework analyzes the internal Abstract Syntax
Tree (AST) representation of the original input code to
collectively determine all the possible optimizations, illus-
trated in Fig 2. Then, a coordination handle is created for
each piece of the original input code that has been used to
configure any of the pre-selected optimizations. The names
of these coordination handles are then used in place of the
original code pieces to configure the optimizations, shown
in Table I. As independently implemented compiler opti-
mizations are applied one after another, each optimization
consistently maintains all the relevant coordination handles
to ensure the original optimization configurations remain
correct irrespective of how many optimizations have already
been applied in the process,

Fig 4(a) illustrates the structure of the gemm kernel
in Fig 1 after a set of coordination handles ( 1,..., 12)
have been created to accommodate interactions among the
customized optimizations in Fig 2. Each handle is assigned
a name ( 1,..., 12) and is associated with a designated frag-
ment of the input code that has been used to configure the
optimizations. Some coordination handles, e.g., 1, 2, 7, 8,
and 9, are associated with the same fragment of code,
e.g., the outermost j loop, because this code piece may
be later split into multiple pieces by some optimizations,
with each new piece associated with a different handle and
serving a different purpose. Fig 4(b) illustrates a number
of such situations. For example, after applying OpenMP
parallelization and loop blocking, the 8 handle becomes
associated with the parallelized j bk 1 loop, the 9 handle
associated with the entire transformed code, the 1 handle
associated with the inner blocked loop, while the remaining
handles ( 7 and 2) stay with the j bk 2 loop. A new
handle, 13, is inserted into the optimized code by the
OpenMP parallelization, to collect all the thread-private
variables that may be created by the later optimizations.

B. Tracing Optimization-induced Relations

While coordination handles can be used to keep track of
modifications to the input code and thereby maintain the
validity of pre-customized optimization configurations, they
must be set up before any optimization is applied. As a
result they cannot be used to keep track of the dynamic
relations among the modified code fragments by the various
optimizations. As illustrated in Fig 4(b), as an input code
goes through various optimizations by the compiler, it’s
internal structure may be dramatically changed, and each
piece of code fragment, e.g., a loop or an expression, may be
moved around, modified to reflect changes of the surround-
ing environment, or split into multiple pieces. Such dynamic

void gemm(int M, int N, int K, double alpha, double *A, int lda,
double *B, int ldb, double beta, double *C, int ldc)

{ int i, j, k;
if (lda>=K && ldb>=K && ldc>=M && no-overlap(A,B,C)) {

/*@;BEGIN(MM pattern[precompute=(”A”,”alpha”*”A”)])@*/
loop1: 9={ 8={ 7={ 2={ 1={for (j = 0; j < N; j += 1)
loop2: 4={ 3={for (i = 0; i < M; i += 1) {

10={C[j * ldc + i]} = (beta * C[j * ldc + i]);
loop3: 6={ 5={for (k = 0; k < K; k += 1)

C[j*ldc+i]+=alpha*{A[k*lda+i]} 11*{B[j*ldb+k]} 12; }}}}}}}}}}}
else {......} }

(a) After initial optimization customization

void gemm(int M, int N, int K, double alpha, double *A, int lda,
double *B, int ldb, double beta, double *C, int ldc)

{ int i, j, k;
1: if (lda>=K && ldb>=K && ldc>=M && no-overlap(A,B,C)) {
2: int j bk 1,j bk 2,i bk 3,k bk 4;
3: 9={omp set num threads(2);
4: #pragma omp parallel for private( 13={k,i,j,j bk 1,j bk 2,i bk 3,k bk 4})
5: 8={for (j bk 1=0; j bk 1<N; j bk 1+=256)`1
6: 7={ 2={for (j bk 2 = 0; j bk 2 <min(N-j bk 1); j bk 2 += 64)tile(`1)
7: 4={for (i bk 3 = 0; i bk 3 < M; i bk 3 += 64)`2
8: 6={for (k bk 4 = 0; k bk 4 < K; k bk 4 += 64)`3
9: 1={for (j = 0; j <min(64,N-j bk 1-j bk 2); j += 2)tile(tile(`1))
10: 3={for (i = 0; i < min(64, M-i bk 3); i += 1)tile(`2)
11: 5={for (k = 0; k < min(64, K-k bk 4); k += 1)tile(`3) {
12: if (k + k bk 4 == 0)split at begin(tile(`3),1)

13: 10={C[(j bk 1+j bk 2+j)*ldc+(i bk 3+i)]}
= beta * C[(j bk 1+j bk 2+j)*ldc+(i bk 3+i)];

14: C[(j bk 1+j bk 2+j)*ldc+(i bk 3+i)]+=alpha*{A[(k bk 4+k)*lda+(i bk 3
+i)]} 11*{B[(j bk 1+j bk 2+j)*ldb+(k bk 4+k)]} 12;

15: if (j + 1 < min(64,N-j bk 1-j bk 2))unroll check(tile(tile(`1))) {
16 if (k + k bk 4 == 0)split at begin(tile(`3),1)

17: C[(j bk 1+j bk 2+j+1)*ldc+(i bk 3+i)]
= beta * C[(j bk 1+j bk 2+j+1)*ldc+(i bk 3+i)];

18: C[(j bk 1+j bk 2+j+1)*ldc+(i bk 3+i)]+=alpha*A[(k bk 4+k)*lda+(
i bk 3+i)] * B[(j bk 1+j bk 2+j+1)*ldb+(k bk 4+k)];

} }}}}}}}}}}}
else {......} }

(b) After applying loop parallelization, blocking, and unroll&jam

Figure 4. Coordination handles for the kernel in Fig 1

relations, however, are critical to keeping some of the earlier
source-level optimizations, e.g., loop blocking and unrolling,
coordinated with later dynamic backend optimizations, e.g.,
loop splitting and peephole optimizations. For example,
without knowing the relations of the various conditional
statements introduced by loop blocking and unroll&jam at
lines 12, 15, and 16 of Fig 4(b), it is difficult for a later
optimization to determine how to split the loops to remove
these conditionals based solely on symbolic analysis of the
conditionals and the surrounding loop bounds.

We have designed a symbolic tagging mechanism to
overcome this difficulty, where the internal representations
of the various code fragments dynamically generated by
optimizations are tagged with unique names and symbolic
relations. For example, the blocked loop at line 5 of Fig 4(b)
is tagged with a unique name `1, and the loop that enu-
merates its inner tile at line 6 is tagged with tile(`1),
a symbolic function indicating its relation with `1. The
outer and inner tiles of the other blocked loops (`2 and
`3) are tagged similarly to indicate their relations. Further,
each of the conditional statements at lines 12, 15 and 16
are tagged with a symbolic relation, e.g., split at begin
and unroll check, to indicate which loops need to be split
to eliminate these conditionals. These relational tags are



pattern recognition(input: function to optimize)
foreach loop nest ` in input do

if (check loop shape(`) && check array ref projection(`) &&
check parallelizability(`) && check permutability(`) && check scalars(`))

then pattern annotation(`); endif
enddo

pattern annotation(pat: recognized pattern)
foreach array reference r = arr[sub] in pat do

(1) bounds = get dimension loop bounds(r, pat);
if (is rectangular(bounds)) then matrix type[arr] ∪ ={rectangular};
elseif (is triangular(bounds)) then matrix type[arr]∪ ={triangular};
else matrix type[arr]=unknown; endif
if size of (matrix type[arr]) > 1 then matrix type[arr] = unknown; endif

(2) if is loop invariant(arr,pat) then
e = parent operation(r);
if is loop invariant(e,pat) then precompute[arr]∪={e}; endif
if size of(precompute[arr]) > 1 then precompute[arr]=unknown; endif

endif
(3) if uses linearized subscript(r)

then runtime check ∪ = gen runtime check(r, bounds); endif
enddo

(4) if runtime check 6= ∅ then pat = insert runtime check(pat, runtime check); endif
insert MM pattern annotation(pat, matrix type, precompute);

Figure 5. Algorithm: pattern-based optimization analysis

generated independently by each optimization as the various
fragments of code are generated. Once inserted, the tags are
persistent and immune to modifications to their target unless
they are explicitly removed. Consequently, they serve as a
dynamic communication mechanism that allows optimiza-
tions to coordinate with each other on the fly, e.g., by tagging
code fragments to be examined by later optimizations.

III. SPECIALIZED OPTIMIZATION FRAMEWORK

Fig 3 illustrates the overall workflow of our framework,
where the conventional organization of compiler optimiza-
tions is augmented with an alternative pattern-driven path,
which uses a single pattern analysis component to discover
computations that have been associated with specialized
optimizations. The recognized patterns are then tagged with
appropriate annotations, e.g., the MM pattern annotation in
Fig 4(a), which are then used by the collective customiza-
tion component to specialize optimizations known to be
important for the recognized kernels. Finally, the coordi-
nated optimization component systematically invokes the ac-
tual optimization implementations with their pre-customized
configurations to ensure both correctness and effectiveness.
The following details our design of the pattern analysis,
collective customization, and the coordinated optimization
components for a class of dense matrix computations. Sec-
tion III-D then discusses the correctness guarantee and the
generality of our optimization approach.

A. Pattern Analysis

Our definition of the MM pattern aims to automatically
categorize all computations that require the same set of opti-
mizations with similar configurations as those summarized in
Fig 2 to attain a highest level of performance. Consequently,
our MM pattern analysis algorithm in Fig 5 imposes the
following constraints on the input code to ensure both the
safety and profitability of the optimizations.

1) Loop shape: the pattern has a single loop nest, with
each loop enumerated using a single index variable,
and all loops nested inside one another. Loops do
not have to be perfectly nested, as astray statements
can be embedded inside conditionals after blocking,
illustrated at lines 12/16 in Fig 4(b). To ensure safety
of optimization, we require that the loop bodies cannot
contain any unknown function calls or dynamic jumps.

2) Determinism of array references: the array dimensions
accessed by the loops must be an orthogonal projection
of the loop iteration space. Specifically, the subscript
of each array access must be a linear combination of
the loop index variables multiplied by a loop-invariant
stride. For example, the reference A[k∗lda+i] in Fig 1
is a linear combination of two loop indices, k and i,
with accessing strides lda and 1 respectively.

3) Loop parallelizability: the outmost and innermost
loops cannot carry any cross-iteration dependences
except those that can be categorized as reduction
dependences [2] carried by the innermost loop. This
requirement ensures the safety of the OpenMP and
SIMD vectorization optimizations in Fig 2.

4) Loop permutability: all loops are fully permutable; that
is, any dependence carried by a loop is from an earlier
iteration to a later iteration. This requirement ensures
the safety of loop blocking and unroll&jam [2].

5) Manageability of variables: all memory references in
the loops must belong to scalar variables or array ref-
erences of the following categories: 1) never modified;
2) a distinct element is modified at each iteration of
a loop `, and the modification live range is contained
inside the single iteration; and 3) reduction variables
used to accumulate values from different iterations
of an inner loop. This requirement is necessary to
ensure the correctness of SIMD vectorization and
scalar replacement, by enforcing that all AVX/SSE
registers and scalar variables used to replace array
references will be properly initialized before used.

Our algorithm in Fig 5 essentially checks each of the
above constraints for each code fragment ` in the input
and inserts annotations to tag ` as MM pattern only if
all constraints are satisfied. Since each array dimension is
required to be an orthogonal projection of its surrounding
loops, the dependence constraints can be determined in
a much simplified fashion. Our pattern analyzer does not
perform pointer aliasing analysis but ensures none of the
arrays in the input can be aliased by inserting necessary
runtime checks. The identified kernels are tagged with the
MM pattern annotation, illustrated in Fig 4(a), with addi-
tional specifications (e.g., precompute) and runtime safety
checks if necessary by determining the following three
additional attributes of the pattern.

• Matrix type: specifically whether each array in the



pattern represents a rectangular, a triangular, or an
unknown matrix type. The evaluation is defined by
Step (1) of the pattern annotation function in Fig 5.
Here since each array dimension is an orthogonal pro-
jection of its surrounding loop iterations, we categorize
the shape of each array reference as that of its iteration
space, specifically the bounds of its surrounding loops
that have nonzero projections. For example, the shape
of A[k ∗ lda+ i] in Fig 4(a) is the rectangular space {
(k,i) | 0 ≤ k < K, 0 ≤ i < M }. Note that if multiple
references of an array entail different matrix types, the
resulting attribute is set to unknown.

• Precompute: specifically whether any loop invariant
evaluation involving an array reference can be pre-
computed when the array is copied outside of the
loops. Evaluated by Step (2) of the pattern annotation
function, this attribute is considered only for read-
only arrays and only when the same expression is
evaluated whenever the array is referenced. In Fig 4(a),
alpha∗A[k∗ lda+i] is an example of such expressions
and can be precomputed when array A is copied.

• Runtime check: specifically a set of boolean expressions
to be checked at runtime to ensure none of the array
references in the pattern may carry unexpected depen-
dences. These expressions are collected at Step (3) of
the pattern annotation function and used at Step (4)
to ensure all optimizations are indeed safe for the
annotated MM pattern.

B. Collective Customization Of Optimizations

After recognizing computations of our targeted
MM pattern from an input application, our next step
examines each annotated code fragment to collectively
customize the relevant optimizations. The key strategy is
to collect up front all the information required to correctly
apply these optimizations to the original code and then
ensure all the information stays up-to-date by wrapping up
critical pieces of code that have been used to configure
the optimizations inside a set of coordination handles,
illustrated in Fig 4(a). The following details these steps.

Fig 6 summarizes our algorithm for collecting the fol-
lowing pieces of information required to customize our
collection of loop and array optimizations.
• The loops targeted by the blocking, unroll&jam, un-

rolling, and later cleanup optimizations, saved in
three CONFIG variables, outer loops, inner loops, and
cleanup scope, respectively, at lines 8-10 of Fig 6.

• The loop to parallelize via OpenMP, the expected
location of the parallelized code, and the thread-private
variables inside the to-be-parallelized loop, saved in
three CONFIG variables, parallel loop, parallel top,
and private vars, at lines 11-13 and 31 of Fig 6.

• The blocking factors to be used in loop parallelization,
blocking, and unrolling, saved in three CONFIG vari-

setup loop opt(pat: a code fragment that belongs to MM pattern)
1: outer loops = ∅; inner loops=∅; private vars=∅;
2: foreach loop ` ∈ pat do
3: t1 = insert handle(`);
4: inner loops = append to list(inner loops, t1);
5: t2 = insert handle(t1);
6: outer loops = append to list(outer loops, t2);
7: private vars=append to list(private vars, loop index var(`));

enddo
8: CONFIG.outer loops=outer loops;
9: CONFIG.inner loops=inner loops;
10: CONFIG.cleanup scope= insert handle(first entry(outer loops));
11: CONFIG.parallel loop = insert handle(CONFIG.cleanup scope);
12: CONFIG.parallel top=insert handle(CONFIG.parallel loop);
13: CONFIG.private vars = insert handle(private vars);
14: CONFIG.par size = determine par block factor(CONFIG.parallel loop,pat);
15: CONFIG.tile size = determine blocking factors(CONFIG.outer loops,pat);
16: CONFIG.unroll size = determine unrolling factors(CONFIG.inner loops,pat);

setup array opt(pat: a code fragment that belongs to MM pattern)
17: CONFIG.arr refs=∅;
18: foreach unique array reference r = arr[sub] in pat:
19: (ivars, coeffs) = find loop index variables(sub)
20: loops = map index vars to loops(ivars);
21: h = insert handle(r);
22: CONFIG.arr refs = CONFIG.arr refs ∪ { h };
23: CONFIG.dims out[h] = {find loop handles(loops, CONFIG.outer loops)};
24: CONFIG.dims in[h] = {find loop handles(loops, CONFIG.inner loops)};
25: CONFIG.ref info[h] = uses = categorize uses(r,pat);
26: if copy array(uses) then CONFIG.arr copy[arr]=h; endif

enddo
27: foreach (arr, exp) ∈ precompute annot(pat) do
28: CONFIG.arr copy[arr]= insert handle(exp);

enddo
29: foreach non-loop-index scalar variable v ∈ pat :
30: CONFIG.scalar info[v] = uses = categorize uses(v,pat);
31: if is private(uses) then CONFIG.private vars ∪ = { v } endif

enddo

Figure 6. Algorithm: collectively customizing optimizations

ables, par size, tile size, and unroll size, respectively,
at lines 14-16 in Fig 6. These parameters are currently
empirically determined by examining the performance
of differently optimized code.

• The subscripted references of each array, saved in
CONFIG.arr refs at line 22, and for each refer-
ence, the loops in CONFIG.outer loops and CON-
FIG.inner loops that enumerate different array di-
mensions, saved in CONFIG.dims out and CON-
FIG.dims in at lines 23-24 of Fig 6.

• Information about each array reference or scalar vari-
able, including whether it is modified/read, needs to be
copied, and allows SIMD vectorization (if yes, how to
vectorize it), saved in two CONFIG variables, ref info
and scalar info, at lines 25 and 30 of Fig 6.

• Arrays to be copied, and for each of them, the reference
to be optimized for better reuse or the expression to be
precomputed during the copy optimization. Saved in
CONFIG.arr copy at lines 26 and 28 of Fig 6.

The insert handle function is invoked at lines 3, 5, 10-13,
21, and 28 of Fig 6 to wrap the various designated pieces
of the input code inside coordination handles, illustrated in
Fig 4(a), before the coordination handles are saved as values
of the configuration variables, so that the content of these
configuration variables will to be automatically adjusted as
the input code goes through the various optimizations.

Table I illustrates our customized ordering of the



optimization configuration interface CONFIG for gemm
OMP parallel which loop to parallelize parallel loop= 8

thread-private variables private vars= 13
parallel block size par size=256

blocking which loop nest to block outer loops={ 2, 4, 6}
blocking factors tile size={64,64,64}

array copy which array references to copy arr copy[A]= 11,
arr copy[B]= 12

loops projected in each reference dims out[ 11]=( 4, 6),
dims out[ 12]=( 2, 6)

is each reference read/modified ref info[ 11]=(R,copy,vec),
ref info[ 12]=(R,copy,vec)

unroll&Jam loops to unroll & jam inner loops={ 1, 3, 5}
unroll factors unroll size={4,1,4}

scalar repl which array references to replace arr refs={ 10, 11, 12}
loops enumerating each reference dims in[ 10]=( 1, 3),

dims in[ 11]=( 3, 5),
dims in[ 12]=( 1, 5)

is each reference read/modified ref info[ 10]=(RW,reduce),
ref info[ 11]=(R,copy,vec),
ref info[ 12]=(R,copy,vec)

SIMD vector. which loop to vectorize last entry(inner loops)= 5
array references to vectorize ref info[ 10]=(RW,reduce),

ref info[ 11]=(R,copy,vec),
ref info[ 12]=(R,copy,vec)

scalars in original input scalar info[beta]=(R),
scalar info[alpha]=(R)

strength
reduce

which array exps to reduce arr refs={ 10, 11, 12}

loops enumerating each reference dims out[ 10]=( 2, 4),
dims out[ 11]=( 4, 6),
dims out[ 12]=( 2, 6),
dims in[ 10]=( 1, 3),
dims in[ 11]=( 3, 5),
dims in[ 12]=( 1, 5)

loop unrolling which loops to unroll last entry(inner loops)= 5
unroll factor last entry(unroll size)=4

loop splitting scope to apply cleanup cleanup scope= 7
peephole opt. scope to apply assembly opt. cleanup scope= 7

Table I
CUSTOMIZING OPTIMIZATIONS FOR THE KERNEL IN FIG 4(A)

MM pattern optimizations and the result of using the CON-
FIG variables in Fig 6 to customize each optimizations
in Fig 2 for the gemm kernel in Fig 1. Here except for
ref info, scalar info, par size, tile size, and unroll size,
whose values are not expected to change irrespective of
what optimizations have been applied, all the other CONFIG
variables use coordination handles inserted inside the input
code, illustrated in Fig 4(a), as their values. The configura-
tions for all optimizations are determined based on the set
of preselected CONFIG variables.

C. Programmable Composition of Optimizations

Fig 7 presents our algorithm for composing the 10 op-
timizations we currently support for MM pattern, after the
two functions in Fig 6 have been invoked to collectively
customize the preselected optimizations. The algorithm es-
sentially invokes each optimization in Table I one after
another in their pre-determined order based on their pre-
customized configurations. Each optimization is invoked
using the syntax

invoke opt(p1, ..., pm, r1 = v1, ..., rn = vn),

where opt is the name of the optimization (e.g., blocking or
parallelization), p1,...,pm are required input parameter val-
ues (e.g., `1), r1,...,rn are names of optional output or tuning

optimize MM pattern(pat: MM pattern code to optimize)
(1) `1=first entry(CONFIG.outer loops);

invoke blocking(`1,ret new vars=CONFIG.private vars,factor=CONFIG.par size);
invoke parallelization(CONFIG.parallel loop, CONFIG.private vars);
move handle(`1, loop body(`1)); move handle(CONFIG.cleanup scope, `1);

(2) if (sizeof(CONFIG.outer loops) > 1) then
invoke blocking(CONFIG.outer loops, ret new ivars=CONFIG.private vars,

ret inner tile=CONFIG.inner loops, factors=CONFIG.tile size);
endif

(3) foreach entry arr→ exp in CONFIG.arr copy do
r=arr ref handle(exp); loops=CONFIG.dims out[r]; info=CONFIG.ref info[r];
if copy triangular(info) then loc=CONFIG.parallel top; vars=null;
else loc=`1; vars=CONFIG.private vars; endif
invoke array copy(exp,loops,loc,has read(info),has mod(info),ret new vars=vars);

enddo
(4) if (sizeof(CONFIG.inner loops) > 1) then

invoke unroll&jam(CONFIG.inner loops, factor=CONFIG.unroll size);
endif

(5) foreach array reference r ∈ CONFIG.arr refs do
loops=CONFIG.dims in[r]; info=CONFIG.ref info[r];
loc=loop body(last entry(loops); vars=∅;
invoke scalar repl(r,loops,loc,has read(info),has mod(info),ret new vars=vars);
CONFIG.private vars∪ = vars; CONFIG.scalar info[vars] = info

enddo
(6) if vectorize(info) == true ∀ vars → info ∈ CONFIG.scalar info then

scope = loop body(second to last entry(CONFIG.inner loops));
invoke simd(CONFIG.scalar info, scope, ret new vars=CONFIG.private vars);

endif
(7) foreach array reference r ∈ CONFIG.arr refs do

loops = append(CONFIG.dims outer[r], CONFIG.dims in[r]);
invoke strength reduction(r, loops, ret new vars=CONFIG.private vars);

enddo
(8) invoke loop unroll(last entry(CONFIG.inner loops), factor=last entry(unroll size));
(9) invoke loop splitting(CONFIG.cleanup scope);
(10)invoke peephole optimization(CONFIG.cleanup scope);

enddo

Figure 7. Algorithm: composition of optimizations

parameters (e.g., ret new vars and factor), and v1,...,vn are
values for the optional output or tuning parameters.

A key emphasis of the algorithm is that after each
step, all the coordination handles in the CONFIG variables
are adjusted if necessary to make sure they always have
the correct values. For example, CONFIG.private vars is
explicitly modified after each optimization that may create
new variables, through the ret new vars parameter of loop
blocking, array copy, unroll&jam, scalar replacement, and
SIMD vectorization. The other handles are maintained in
a similar fashion through two steps. First, when each opti-
mization is invoked, it ensures all the coordination handles
in the input are modified with equivalent transformed code.
Second, after each optimization, the composition algorithm
explicitly modifies various coordination handles to synchro-
nize among the optimizations, as detailed in the following.

1) Loop parallelization: the first entry (`1) of CON-
FIG.outer loops is extracted, strip-mined using CON-
FIG.par size as the blocking factor, and then paral-
lelized via OpenMP. Then, the coordination handle in
`1 and the CONFIG.cleanup scope handle are explic-
itly moved to the inner tiled loops (body of `1) for
additional thread-local optimizations.

2) Loop blocking: if CONFIG.outer loops has more than
one loops, they are blocked (using CONFIG.tile size
as the blocking factors), and CONFIG.inner loops is
passed as an output parameter of invoke blocking so
that its handles are moved to the inner tiled loops.



3) Array copy: for each array in CONFIG.arr copy, if
only the lower/upper triangular of the array needs to be
copied, the copies are performed sequentially before
the parallelized loop; otherwise, each thread will make
its own local copy of the array before the outermost
loop in CONFIG.outer loops. The new layout of the
copied array is made to reflect how the blocked loops
in CONFIG.dims out enumerate different elements of
the array. and CONFIG.private vars is modified to
contain new local variables if copying is performed
concurrently by each thread.

4) Loop unroll&jam: if CONFIG.inner loops has more
than one loops, the outer ones are unrolled (using
CONFIG.unroll size as unrolling factors), with the
unrolled iterations jammed inside the innermost loop.

5) Scalar replacement: replace each array reference
r in CONFIG.arr refs with scalar variables in-
side the body of its innermost nonzero-projected
loop (last entry(CONFIG.dims inner[r]))), according
to configurations in CONFIG.ref info[r]. Both CON-
FIG.private vars and CONFIG.scalar info are then
modified to include the new scalar variables created.

6) SIMD vectorization: if all variables in CON-
FIG.scalar info can be safely vectorized, the inner-
most loop in CONFIG.inner loops is vectorized, and
the body of its surrounding loop is modified to use
SSE/AVX registers. Note that all the array references
have been replaced with scalars, so their information
can be found in CONFIG.scalar info.

7) Strength reduction: for each entry r in CON-
FIG.arr refs, incrementally evaluate the referenced
address at each iteration of the loops in CON-
FIG.dims out[r] or CONFIG.dims in[r], whose index
variables are used in r to enumerate different elements.

8) Loop unrolling: the last entry in CONFIG.inner loops
is unrolled to create a larger loop body.

9) Loop splitting: examine the so-far optimized code in
CONFIG.cleanup scope and invoke loop splitting to
eliminate conditionals inside loops.

10) Peephole optimization: invoke dynamic assembly level
optimizations to further improve efficiency within
CONFIG.cleanup scope.

The purpose of the loop splitting and peephole opti-
mizations in Fig 7 is to further improve the efficiency
of the code generated by previous optimizations. Unlike
the other optimizations, they do not have a set con-
figuration but instead examine their input code to dy-
namically identify optimization opportunities. In partic-
ular, when each of the earlier optimizations generate
code fragments that need to be later cleaned up, spe-
cial symbolic names, e.g., `1, `2, and `3 in Fig 4(b),
and relations, e.g., tile(`1), split at begin(tile(`3, 1)), and
unroll check(tile(tile(`1))), are created to tag these frag-

invoke loop splitting(input: code to cleanup)
(1) foreach loop `1 from inside out in input do

t1 = get loop ctrl tag(`1); body=get loop body(`1);
if (t1 6= null) then

(1.1) (`2,x) = find last loop with tag(split at end, tile(t1),body));
if `2 6= null then peel loop at end&cleanup(`1, x); endif

(1.2) (`2,x) = find last loop with tag(unroll check, tile(t1),body));
if `2 6= null then split loop at tile end&cleanup(`1, x); endif

(1.3) (`2,x) = find last loop with tag(split at begin, tile(t1),body));
if `2 6= null then peel loop at begin&cleanup(`1, x); endif

enddo
(2) foreach loop `1 from inside out in input do

t1 = get loop ctrl tag(`1); body=get loop body(`1);
if (t1 6= null) then

(`2,x) = find last loop with tag(unroll check, t1,body));
if `2 6= null then split loop at end&cleanup(`1, x); endif

endif
enddo

Figure 8. Algorithm: cleaning up conditionals inside loops

ments, thereby dynamically driving the operations of the
later cleanup optimizations.

Fig 8 shows an algorithm skeleton of the in-
voke loop splitting function invoked in Fig 7, which
serves to remove conditionals, e.g., those tagged with the
split at begin and unroll check relations in Fig 4, from
inside loops, by splitting the surrounding loops whose index
variables are involved in the conditionals, so that the condi-
tionals become either always true, in which case the check
can be removed, or always false, in which case the entire
conditional together with its body are removed. In particular,
step (1) of the algorithm removes all conditionals introduced
by loop blocking by identifying each outer blocked loop that
has been tagged with a symbolic name, e.g., `1, with some
loop in its body tagged with tile(`1), and its body contains
at least one of the relational tags, split at end(tile(`1)), un-
roll check(tile(`1)), or split at begin(tile(`1)). An artificial
ordering is set for the splitting process so that each loop is
first split at the end if necessary, before the main loop is split
again at the beginning. Step (2) of the algorithm removes
the unroll check conditionals introduced by loop unrolling
or unroll&jam in a similar fashion.

We currently apply only two peephole optimizations. The
first aims to eliminate an extra penalty introduced by Intel
processors [16] when multiple data items in an AVX register
are reduced to a single value, using an SSE instruction.
In particular, a vzeroupper instruction is inserted after the
reduction operation to prevent the hardware from recovering
the upper bits of the AVX register, thus saving wasted
clock cycles. The second optimization aims to translate each
pair of multiply-followed-by-an-add instructions into a sin-
gle fused-multiply-accumulate instruction (FMA) on AMD
processors [3], thereby removing the extra dependences and
leading to improved pipeline efficiency.

D. Correctness, Generality And Effectiveness

Our current specialization of compiler optimizations in-
cludes two key strategies: (1) a customized ordering of the
optimizations and (2) a specialized configuration for each
optimization, to collectively maximize their effectiveness
while minimizing interferences. In particular, the following



decisions are made to customize a set of general-purpose
compiler optimizations for dense matrix computations.

• The outermost loop is first strip-mined before paral-
lelized, so that when the input code does not include
sufficient work (i.e., the loop iteration count is low), it
does not have to be parallelized using all the threads.

• Array copy is enabled together with loop blocking but
only for arrays that carry sufficient reuses.

• When possible, copying of arrays are performed con-
currently by multiple threads, to reduce the startup cost
of each thread by preloading the copied arrays.

• Blocking and unrolling factors are determined by em-
pirically selecting from a set of best-known values.

• Loop splitting and peephole optimizations are specially
designed to cleanup results of earlier optimizations.

All the optimizations we consider are general purpose and
are likely already included in a majority of optimizing
compilers (e.g., PLUTO [9] + icc). So the benefit of spe-
cialization comes only from pattern-based collective cus-
tomization of these optimizations and the fine-grained co-
ordination among optimizations enabled by our framework.
The correctness of the specialization is guaranteed by two
conditions: (1), the consistency between our pattern analysis
algorithm in Fig 5 and optimization customization algorithm
in Fig 6, as the analysis never mis-categorizes an input code
as MM pattern unless all the pre-customized optimizations
in Fig 6 can be safely applied to the computation, with
additional runtime checks inserted surrounding the opti-
mized code to resolve any remaining uncertainty; and (2),
the correctness of our optimization composition algorithm
in Fig 7, which uses fine-grained coordination among the
optimizations to guarantee that the original optimization cus-
tomizations remain correct irrespective of any intermediate
modifications to the input code. The following further details
the correct customization of each specialized optimization.

• OpenMP parallelization, which is applied to the outer-
most loop of the original input. Since our MM pattern
requires that this loop cannot carry any dependence, and
lines 7 and 31 of Fig 6 modify CONFIG.private vars
to contain all loop index variables and private variables
within each iteration, the optimization is safe.

• Loop blocking and unroll&jam, which are applied if
the input code contains more than one loop. Their
correctness requires all the loops to be nested inside
one another, and each loop can only carry forward
dependences from earlier iterations to later ones. Both
conditions are guaranteed by our pattern analysis.

• Array copy and scalar replacement, which are correct
as long as each array reference can be precisely mapped
to its new locations, and the new locations are properly
initialized and saved back to the original arrays when
necessary. The precise location mappings are guaran-
teed by our pattern analysis of the input code, which

requires that data accessed by each array reference
is an orthogonal projection of its surrounding loops.
The CONFIG.ref info variable contains the result of
invoking the categorize uses(r) function at line 25 of
Fig 6 to determine correct copy configurations for each
array reference r based on its use patterns.

• SIMD vectorization, which parallelizes the innermost
loop if all the array references are categorized as vec-
torizable by CONFIG.ref info; i.e., they either access
the same element or contiguous memory locations at
consecutive iterations of the loop. Since our pattern
analysis guarantees the innermost loop does not carry
any non-reduction dependence, the optimization is safe.

• Strength reduction, innermost loop unrolling, loop split-
ting, and peephole optimizations, which are either al-
ways correct (e.g., loop unrolling) or use internal sym-
bolic analysis of expressions to guarantee correctness
of the optimizations.

Level-1 Level-2 Level-3

Applicable axpy, scal, copy,
swap

gemv, ger, trmv,
trsv

gemm, syrk, syr2k,
trsm(l/u), trmm(l/u)

+ Parallel
reduction

asum, dot, min,
max, norm, abs

+ Data-layout
normoalization

symv, sbmv, spmv,
syr, syr2, spr, spr2
gbmv, tbmv, tbsv,
tpmv, tpsv

symm

Table II
CATEGORIZATION OF BLAS ROUTINES

Our definition of the MM pattern is based on a set of
constraints on the input code that are required to trigger a
special customization of optimizations well recognized as
important for linear algebra kernels. The same methodology
can be similarly applied to specialize the optimization of
other patterns of computation, e.g., stencils and digital
signal processing, and graph algorithms, by recognizing
how to best optimize these computations, formulating the
constraints explicitly, and then replacing our algorithms in
Figures 5, 6, and 7 accordingly.

The MM pattern we currently target applies to a large
number of fundamental linear algebra kernels. In particular,
Table II shows the categorization of the entire collection of
BLAS routines into the following three classes.

1) Applicable: these kernels belong to our MM pattern
and include 40% of level-1, 25% of level-2, and 85%
of level-3 BLAS kernels; overall 44% of all BLAS.

2) + Parallel reduction: these kernels cannot be catego-
rized as MM pattern because their outermost loops
carry cross-iteration dependences and thus cannot be
parallelized in the same straightforward fashion.

3) + Data-layout normalization: these kernels cannot be
categorized as MM pattern because their input matri-
ces use packed, banded, or symmetric storage format.
As the result, the array subscript expressions used
to reference these matrices are no longer orthogonal



projections of the surrounding loop index variables.
While the BLAS library includes only a subset of all

dense matrix computations, it provides the most fundamental
building blocks that are combined to solve more complex
problems, e.g., LU/QR factorizations and eigenvalue solvers
in LAPACK [5]. Our framework, as all general-purpose
compilers, aims to automatically recognize and optimize all
occurrence of such kernels in higher-level routines and large
applications. Our current optimizations target only commod-
ity multi-core Intel/AMD CPU processors. However, the
optimization customization and composition algorithms in
Figs 6 and 7 can be extended to alternatively target new
emerging architectures such as many-core GPUs.

IV. EXPERIMENTAL RESULTS

We have implemented a prototype of our optimization
framework using POET [32], a program transformation
language designed to support the programmable control of
compiler optimizations. Our optimizer invokes the POET
built-in library to perform a standard set of loop optimiza-
tions [2] and the SIMD vectorization algorithm in [15].
Our algorithms for pattern analysis (Fig 5), collective cus-
tomization(Fig 6), and optimization composition (Fig 7) are
all implemented from scratch using POET. The blocking
and unrolling factors are automatically determined using
the transformation-aware empirical-search algorithm in [25]
based on the performance feedback of differently optimized
code. Specifically, different values of these parameters may
be chosen for each loop being optimized by our framework
to maximize performance of the optimized code.

CPU Freq. L1 cache sz L2 cache sz # of cores
Intel Xeon E5-2420 1900MHz 32KB 256KB 12
AMD FX(tm)-8320 1400MHz 16KB 2048KB 8

Table III
PLATFORMS CONFIGUERATIONS

Intel Xeon E5-2420 AMD FX(tm)-8320
# threads 12 8

input sz
76802 (level-3) 51202 (level-3)
102402 (level-2) 102402 (level-2)
1024000 (level-1) 1024000 (level-1)

gcc-4.7.3 flags -O2 -fopenmp -O2 -fopenmp
icc-14.0.0 flags -O3 -ftree-vectorize -openmp -

Table IV
EVALUATION CONFIGURATIONS ON BOTH INTEL AND AMD

We have used our framework to optimize all the 15 BLAS
kernels that belong to MM pattern, listed under the Applica-
ble category in Table II, and 9 application benchmarks from
the SPLASH-2 (Stanford ParalleL Applications for SHared
memory) benchmark suite [30]. Differently optimized imple-
mentations of the kernels and applications are evaluated on
two machines, an Intel E5-2420 and an AMD FX(tm)-8320,
shown in Table III. The execution configurations for all the
kernels are shown in Table IV, and those for the 9 application
benchmarks are shown in Table V. Each implementation

has been evaluated five times, with the average performance
reported (the variation across runs is 2-8%).

For each BLAS kernel, we compare the performance of
our automatically optimized kernels with that of the manu-
ally optimized ones from three leading BLAS library imple-
mentations, Intel MKL-11.0 [17], AMD ACML-5.3.1 [4],
and ATLAS-3.11.11 [29], and with that automatically at-
tained by two compilers, PLUTO-0.7 [9] and Intel icc-
14.0.0. Then, the impact of the optimization specialization
and the scalability of the optimized kernels are studied in
more details. For each SPLASH-2 benchmark, we compare
the optimization speedups attained by our framework with
those attained by PLUTO and icc.

Intel Xeon E5-2420 AMD FX(tm)-8320
#threads 12 8
compiler icc (-O3 -lpthread -lm) gcc (-O3 -lpthread -lm)
Barnes 64K particles
Fmm 64K particles

Ocean(cont/ncont) 1026×1026 ocean
Raytrace car
Volrend head

Water(nsq/sp) 4096×4096 molecules
Radiosity room, -ae 5000.0 -en 0.050 -bf 0.10

Table V
EVALUATION CONFIGURATIONS OF SPLASH-2 APPLICATIONS

A. Overall Performance

Fig 9 compares the overall performance of the 15 BLAS
kernels when optimized by our matrixOpt optimizer, the
PLUTO [9] compiler, and the Intel icc compiler (used only
on the Intel platform). The compiler optimized kernels are
also compared with manual implementations from the Intel
MKL, AMD ACML, and ATLAS libraries, The MFLOPS of
the benchmarks are plotted using logarithmic base-2 scale
to highlight the performance differences at all levels.
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Figure 9. Overall performance of optimized kernels



For the 7 level-3 BLAS kernels, our optimizer attained 68-
90% of the best performance attained by the MKL library
on the Intel Xeon, 63-84% of the best performance by the
ACML library on the AMD, and 73-94% of the performance
of ATLAS on both processors. The performance automati-
cally attained by our optimizer is significantly better than
those attained by the PLUTO and the Intel icc compilers,
by factors of 2-40 and 20-208 respectively. The difference
between our optimized code and those optimized through
manually written assembly in MKL, ACML, and ATLAS is
due to the lack of some additional dynamic optimizations,
e.g., memory prefetching and instruction scheduling, that our
optimizer currently does not support.

For the 8 level-2 and level-1 BLAS kernels, the per-
formance attained by our optimizer is the best among
all implementations on both platforms except for gemv n
on the AMD, where our optimizer attained 75% of the
best performance attained by ACML. The performance by
PLUTO is only slightly worse than that of our matrixOpt
on the Intel processor but lags significantly behind the other
implementations on the AMD, due to the lack of backend
optimization support by gcc. In contrast, our optimizer
performs equally well irrespective of whether gcc/icc is used
to generate machine code, as it collectively integrates a much
wider spectrum of optimizations in a coordinated fashion.

To quantify the benefit of integrating pattern-based op-
timization specialization within a general-purpose compiler
to optimize large applications, Figure 10 shows the extra
speedups gained by optimizing the 9 SPLASH-2 benchmarks
using our matrixOpt or PLUTO combined with icc/gcc
compilers, over using icc/gcc alone. Our matrixOpt has suc-
cessfully identified MM patterns in 5 of the 9 benchmarks,
where it attained 5%-15% extra speedup over using icc alone
on the Intel processor and 4%-11% extra speedup over using
gcc along on the AMD. Although the loops optimized by
our matrixOpt are a subset of those optimized by PLUTO,
our optimized benchmarks attained an extra 2-4% speedup
over those by PLUTO on both processors.

B. Impact Of Individual Optimizations

To better explain the performance differences in Fig 9,
Fig 11 quantifies the contribution of each individual ma-
trixOpt optimization when applied to the BLAS kernels on
the Intel platform, by turning off each optimization one
by one in the reverse of their application order in Fig 7,
until only OpenMP parallelization is left. The impact of
optimizations is similar on the AMD and is omitted here.

For the 7 level-3 BLAS kernels, the 3 CPU-level opti-
mizations, SIMD vectorization, Loop splitting and Peephole
Optimization, have the most impact as these kernels have
become CPU-bound after the earlier optimizations. The
PLUTO compiler applied the loop optimizations well to
enhance cache reuse. However, since it relies on Intel icc
to perform the backend CPU-level optimizations, the overall
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Figure 10. Effectiveness of optimizing SPLASH-2 benchmarks

performance is compromised due to the lack of coordination
among the two compilers. The icc compiler performs many
advanced CPU-level optimizations. However, using icc alone
attains the worst performance among all approaches due to
the lack of better cache-level optimizations.
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For the 4 level-2 BLAS kernels, the most important
optimizations are loop blocking and unroll&jam, which
enhance data reuses within the computation. Because these
kernels remain memory-bound even after blocking, the CPU-
level optimizations are useful but do not play nearly as
important a role as that for the level-3 kernels. Here reusing
each data item is critical to attaining performance, a job all
optimization approaches did reasonably well in Fig 9.

For the 4 level-1 BLAS kernels, only a single loop is eval-
uated in the computation. Since they are severely memory-
bound and without any reuse of data, neither the cache
level nor the CPU-level optimizations have any impact, and
the most important ones are scalar replacement and loop
unrolling. Our optimizer attained better performance for
these kernels likely because it did a good job of replacing
array references with scalars.
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Figure 12. Impact of optimization coordination on the Intel Xeon

C. Impact Of Optimization Coordination

If taking out array-copy, the optimizations supported by
our matrixOpt are a strict subset of those supported by
PLUTO + icc. All combined together, they are a strict subset
of those manually applied by MKL, ACML, and ATLAS.
Therefore, our performance speedups over PLUTO+icc can
only come from two sources: (1) the benefit of applying
array copy together with the other optimizations; and (2) the
fine-grained coordination among all optimizations. Fig 12
aims to quantify the impact of both sources by combining
our matrixOpt with the Intel icc compiler instead of gcc.
Then, after removing the array copy optimization from our
matrixOpt, we incrementally remove each optimization al-
ready implemented in icc to quantify the impact of invoking
the optimization with or without coordination.

From Fig 12, after disabling the array copy optimization,
we observed 15%-29% slowdown for the level-3 kernels.
The slowed down matrixOpt, however, still outperformed
PLUTO+icc by factors of 1.6-31, which quantify the benefit
of fine-grained coordination and specialized customization
of the optimizations. Additionally disabling the coordinated
application of 3 CPU-level optimizations, peephole, loop
splitting, and SIMD vectorization, however, significantly
slowed down the optimized code. Finally, after further
disabling scalar replacement, where the optimizations in
matrixOpt become a subset of those applied by PLUTO, our
stripped-down matrixOpt performed worse than PLUTO+icc
by 3%-40% for the level-3 BLAS kernels.

D. Impact Of Optimization Ordering
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Our matrixOpt applies 10 finely-coordinated optimiza-
tions in a pre-customized order, shown in Fig 7. Fig 13
quantifies the impact of this specialized ordering of the co-
ordinated optimizations by comparing its performance with
that of three alterantive orderings of the same optimizations,
the ordering in Fig 2, which represents a natural ordering
of the involved optimizations in a general-purpose compiler,
and two variations of the default ordering in matrixOpt: the
first variation moves loop unroll&jam (optimization#4) to be
applied after scalar replacement (#5), SIMD vectorization
(#6), strength reduction (#7), and loop unrolling(#8); the
second variation moves strength reduction (#7) to be applied
before scalar replacement (#5) and SIMD vectorization (#6).

From Fig 13, the specialized optimization ordering in
matrixOpt is able to attain 3%-20% better performance
than that of the ordering in Fig 2. Further, two small
variations of the best ordering incurred 4%-45% and 6%-
67% slowdown respectively, indicating the sensitivity of the
matter. In particular, even when the optimizations are able
to adequently coordinate with each other, the ordering of a
few optimizations, specifically, loop unroll&jam, scalar re-
placement, and SIMD vectorization, can result in significant
differences in the number of scalar variables, and thereby the
register pressure, of the loop body, which in turn can result
in different registers being spilled and different numbers of
pipeline stalls due to instruction scheduling,

E. Scalability Of Optimized Code

To study the weak scalability of the optimized kernels,
Fig 14 shows the performance in logarithmic base-2 scale of
two kernels, gemm and gemv, which represent level-3 and
level-2/1 BLAS groups, on the Intel Xeon using matrix sizes
ranging from 3202-76802 and 5122-102402 respectively.

For gemm, our optimized code performed worse than that
of MKL/ATLAS but has continued to improve as the matrix
size becomes increasingly large. This is likely due to our
array copy optimization, which incurs a higher overhead than
those employed by MKL and ATLAS. However, since each
copied item is reused N times, the overhead is increasingly
amortized as the matrices become larger.

For gemv, our performance stays mostly constant for all
matrix sizes, while the other implementations performed
poorly for small matrices but steadily increased their per-
formance as the size becomes larger. Here because our opti-
mization algorithm in Fig 7 explicitly blocks the outermost
loop into chunks of iterations before invoking OpenMP par-
allelization, it guarantees the amount of work by each thread
and elects to use fewer threads when insufficient amount of
computation is available. As the result, its performance does
not vary with the problem size as the other approaches do.

V. RELATED WORK

Many compiler optimizations, e.g., loop blocking [20],
unroll&jam [10], scalar replacement [27], SIMD vectoriza-
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Figure 14. Scalability of optimized code on the Intel Xeon

tion [15], [26], [23], among others [22], [12], have been
developed for dense matrix codes. Our work integrated these
optimizations and aims to enhance their aggregated effec-
tiveness through collective customization and coordinated
composition of the optimizations.

A number of general frameworks[18], [1], [21], e.g., the
polyhedral model [7], has been shown to be effective at
collectively considering a large set of the loop optimizations
and generating efficient code. However, this body of work
is limited in that they consider only loop optimizations.
As shown in our experimental results, the performance
attained by the PLUTO Polyhedral optimizing compiler [9]
lags significantly behind those attained by our specialized
optimizer and HPC libraries due to its lack of fine-grained
coordination with the later backend optimizations by the
icc compiler. Our work compliments these frameworks by
providing additional mechanisms to enable such fine-grained
coordinations across all optimizations.

We implemented our prototype optimizer using the POET
program transformation language [32]. Yi and Whaley
demonstrated that by manually writing POET scripts to
optimize several linear algebra kernels, they can achieve per-
formance comparable to that achieved by manually written
assembly in ATLAS [33]. Yi [31] developed a source-to-
source optimizing compiler to automatically produce pa-
rameterized POET scripts for a subset of the optimiza-
tions. Similarly, the EPOD framework by Cui et. al [14]
used two patterns, a dense matrix and a stencil pattern, to
specialize optimizations within the Open64 compiler. Our
work also seeks pattern-guided specialization of compiler
optimizations. We consider a larger set of optimizations and
a wider variety of kernels than those considered previously

for dense matrix computations. Further, we automatically
perform collective customization and specialization of the
optimizations, which were not done previously. Qian et. al
developed AUGEM [28], a framework that uses a template-
based approach to automatically integrate specially tailored
assembly-level optimizations usually applied only manually
by HPC developers. Their framework also uses the POET
language but focuses on domain-specific code generation
instead of general-purpose compiler optimizations.

This paper is orthogonal to existing research on automated
empirical tuning of compiler optimizations through iterative
compilation [6], [24], [11]. Our optimizer currently uses a
simple search script [25] to empirically determine appropri-
ate blocking and unrolling factors but can easily integrate
other existing more advanced empirical tuning techniques.

VI. CONCLUSIONS

This paper presents a new methodology to support the col-
lective customization and fine-grained coordination across
the spectrum of general-purpose compiler optimizations
and demonstrates the effectiveness of this methodology
by collectively customizing and specializing 10 compiler
optimizations to attain a highest level of performance for
dense matrix computations. Our future work will integrate
additional optimizations to target computations in other
domains, e.g., stencils and sparse matrices, and for additional
computing platforms such as many core GPUs.
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